Рисунок 2.13. Использование кода RZ в оптоволоконных сетях
Код RZ применяется не только в сетях на основе электрического кабеля, но и в оптоволоконных сетях. Поскольку в них не существует положительных и отрицательных уровней сигнала, используется три уровня: отсутствие света, «средний» свет, «сильный» свет. Это очень удобно: даже когда нет передачи информации, свет все равно присутствует, что позволяет легко определить целостность оптоволоконной линии связи без дополнительных мер (Рисунок 2.13).
Код Манчестер-П, или манчестерский код, получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от кода RZ имеет не три, а всего только два уровня, что способствует его лучшей помехозащищенности. Логическому нулю соответствует положительный переход в центре бита (то есть первая половина битового интервала - низкий уровень, вторая половина — высокий), а логической единице соответствует отрицательный переход в центре бита (или наоборот).
Обязательное наличие перехода в центре бита позволяет приемнику кода Манчестер-П легко выделить из пришедшего сигнала синхросигнал, что дает возможность передавать информацию сколь угодно большими пакетами без потерь из-за рассинхронизации. Допустимое расхождение часов приемника и передатчика может достигать величины 25%. Как и в случае кода RZ, пропускная способность линии требуется в два раза выше,
чем при использовании простейшего кода NRZ. Например, для скорости передачи 10 Мбит/с требуется полоса пропускания 10 МГц. Код Манчес-тер-П используется как в электрических кабелях, так и в оптоволоконных кабелях (в последнем случае один уровень соответствует отсутствию света, а другой - наличию света).
Большое достоинство манчестерского кода — отсутствие постоянной составляющей в сигнале (половину времени сигнал положительный, другую половину - отрицательный). Это дает возможность применять для гальванической развязки импульсные трансформаторы. При этом не требуется дополнительного источника питания для линии связи (как в случае использования оптронной развязки), резко уменьшается влияние низкочастотных помех, которые не проходят через трансформатор, легко решается проблема согласования.
При скорости 10 Мбит/ с это частоты 10 МГц (при последовательности одних единиц: 11111111...) и 5 МГц (при последовательности одних нулей: 00000000...).
Здесь же стоит упомянуть о том, что часто совершенно неправомерно считается, что скорость передачи в бодах равняется скорости передачи в битах в секунду. Это верно только в случае кода NRZ. Скорость в бодах характеризует не количество передаваемых бит в секунду, а количество изменений уровня сигнала в секунду. При использовании кодов RZ или Манчестер-П требуемая скорость в бодах оказывается вдвое выше, чем при коде NRZ, поэтому логичнее измерять скорость передачи по сети не в бодах, а в битах в секунду (бит/с, Кбит/с, Мбит/с).
Все разрабатываемые в последнее время коды призваны найти компромисс между требуемой при заданной скорости передачи полосой пропускания кабеля и возможностью самосинхронизации. Разработчики стремятся сохранить самосинхронизацию, но не ценой двукратного увеличения полосы пропускания.
Чаще всего для этого в поток передаваемых битов добавляют биты синхронизации, например, один бит синхронизации на 4, 5 или 6 информационных битов или два бита синхронизации на 8 информационных битов. Правда, в действительности все обстоит несколько сложнее: кодирование не сводится к простой вставке в передаваемые данные дополнительных битов. Группы информационных битов преобразуются в передаваемые по сети группы с количеством битов на один или два больше. Приемник, естественно, осуществляет обратное преобразование, восстанавливает исходные информационные биты. Довольно просто осуществляется в этом случае и обнаружение несущей частоты (то есть детектирование передачи).
Так, в сети FDDI (скорость передачи 100 Мбит/с) применяется код 4В/5В, который 4 информационных бита преобразует в 5 передаваемых битов. При этом синхронизация приемника осуществляется один раз на 4 бита, а не в каждом бите, как в случае кода Манчестер-П. Требуемая полоса пропускания увеличивается по сравнению с кодом NRZ не в два раза, а только в 1,25 раза (то есть составляет не 100 МГц, а всего лишь 62,5 МГц).
По тому же принципу строятся и другие коды, например 5В/6В, исполь зуемый в стандартной сети lOOVG-AnyLAN, или 8В/10В, используемый в сети Gigabit Ethernet.
В сегменте 100BASE-T4 сети Fast Ethernet применен несколько иной подход. Там используется код 8В/6Т, предусматривающий параллельную передачу трех трехуровневых сигналов по трем витым парам. Это позволяет достичь скорости передачи 100 Мбит/с на дешевых кабелях с витыми парами категории 3, имеющих полосу пропускания всего лишь!6 МГц (см. табл. 2.1). Правда, это требует большего расхода кабеля и увеличения количества приемников и передатчиков. К тому же принципиально важно, чтобы все провода были одной длины, чтобы задержки сигнала в них не различались на заметную величину.
Подробнее эти коды будут рассмотрены в разделах книги, посвященных конкретным типам существующих сетей.
Все упомянутые коды предусматривают непосредственную передачу в сеть цифровых двух- или трехуровневых прямоугольных импульсов. Однако иногда в сетях используется и другой путь - модуляция информационными импульсами высокочастотного аналогового сигнала. Такое аналоговое кодирование позволяет при переходе на широкополосную передачу существенно увеличить пропускную способность канала связи. К тому же, как уже отмечалось, при прохождении по каналу связи аналогового сигнала (синусоидального) не искажается форма сигнала, а только уменьшается его амплитуда, а в случае цифрового сигнала еще и искажается форма сигнала (см. Рисунок 2.5).